63 research outputs found

    Unique patterns of CD8+ T-cell-mediated organ damage in the Act-mOVA/OT-I model of acute graft-versus-host disease.

    Get PDF
    T-cell receptor (TCR)-transgenic models of acute graft-versus-host disease (aGvHD) offer a straightforward and highly controlled approach to study the mechanisms and consequences of T-cell activation following allogeneic hematopoietic stem cell transplantation (aHSCT). Here, we report that aHSCT involving OT-I mice as donors, carrying an ovalbumin-specific CD8+ TCR, and Act-mOVA mice as recipients, expressing membrane-bound ovalbumin driven by the β-actin promoter, induces lethal aGvHD in a CD8+ T-cell-dependent, highly reproducible manner, within 4-7 days. Tracking of UBC-GFP/OT-I graft CD8+ T cells disclosed heavy infiltration of the gastrointestinal tract, liver, and lungs at the onset of the disease, and histology confirmed hallmark features of gastrointestinal aGVHD, hepatic aGvHD, and aGvHD-associated lymphocytic bronchitis in infiltrated organs. However, T-cell infiltration was virtually absent in the skin, a key target organ of human aGvHD, and histology confirmed the absence of cutaneous aGVHD, as well. We show that the model allows studying CD8+ T-cell responses in situ, as selective recovery of graft CD45.1/OT-I CD8+ T cells from target organs is simple and feasible by automated tissue dissociation and subsequent cell sorting. Assessment of interferon-gamma production by flow cytometry, granzyme-B release by ELISA, TREC assay, and whole-genome gene expression profiling confirmed that isolated graft CD8+ T cells remained intact, underwent clonal expansion, and exerted effector functions in all affected tissues. Taken together, these data demonstrate that the OT-I/Act-mOVA model is suitable to study the CD8+ T-cell-mediated effector mechanisms in a disease closely resembling fatal human gastrointestinal and hepatic aGVHD that may develop after aHSCT using HLA-matched unrelated donors

    CD44 Expression Intensity Marks Colorectal Cancer Cell Subpopulations with Different Extracellular Vesicle Release Capacity

    Get PDF
    Extracellular vesicles (EV) are released by virtually all cells and they transport biologically important molecules from the release site to target cells. Colorectal cancer (CRC) is a leading cause of cancer-related death cases, thus, it represents a major health issue. Although the EV cargo may reflect the molecular composition of the releasing cells and thus, EVs may hold a great promise for tumor diagnostics, the impact of intratumoral heterogeneity on the intensity of EV release is still largely unknown. By using CRC patient-derived organoids that maintain the cellular and molecular heterogeneity of the original epithelial tumor tissue, we proved that CD44(high) cells produce more organoids with a higher proliferation intensity, as compared to CD44(low) cells. Interestingly, we detected an increased EV release by CD44(high) CRC cells. In addition, we found that the miRNA cargos of CD44(high) and CD44(low) cell derived EVs largely overlapped and only four miRNAs were specific for one of the above subpopulations. We observed that EVs released by CD44(high) cells induced the proliferation and activation of colon fibroblasts more strongly than CD44(low) cells. However, this effect was due to the higher EV number rather than to the miRNA cargo of EVs. Collectively, we identified CRC subpopulations with different EV releasing capabilities and we proved that CRC cell-released EVs have a miRNA-independent effect on fibroblast proliferation and activation

    Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA

    Get PDF
    Recently, biological roles of extracellular vesicles (which include among others exosomes, microvesicles and apoptotic bodies) have attracted substantial attention in various fields of biomedicine. Here we investigated the impact of sustained exposure of cells to the fluoroquinolone antibiotic ciprofloxacin on the released extracellular vesicles. Ciprofloxacin is widely used in humans against bacterial infections as well as in cell cultures against Mycoplasma contamination. However, ciprofloxacin is an inducer of oxidative stress and mitochondrial dysfunction of mammalian cells. Unexpectedly, here we found that ciprofloxacin induced the release of both DNA (mitochondrial and chromosomal sequences) and DNA-binding proteins on the exofacial surfaces of small extracellular vesicles referred to in this paper as exosomes. Furthermore, a label-free optical biosensor analysis revealed DNA-dependent binding of exosomes to fibronectin. DNA release on the surface of exosomes was not affected any further by cellular activation or apoptosis induction. Our results reveal for the first time that prolonged low-dose ciprofloxacin exposure leads to the release of DNA associated with the external surface of exosomes

    Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods

    Get PDF
    BACKGROUND: Exosomes are emerging targets for biomedical research. However, suitable methods for the isolation of blood plasma-derived exosomes without impurities have not yet been described. AIM: Therefore, we investigated the efficiency and purity of exosomes isolated with potentially suitable methods; differential ultracentrifugation (UC) and size exclusion chromatography (SEC). METHODS AND RESULTS: Exosomes were isolated from rat and human blood plasma by various UC and SEC conditions. Efficiency was investigated at serial UC of the supernatant, while in case of SEC by comparing the content of exosomal markers of various fractions. Purity was assessed based on the presence of albumin. We found that the diameter of the majority of isolated particles fell into the size range of exosomes, however, albumin was also present in the preparations, when 1h UC at 4 degrees C was applied. Furthermore, with this method only a minor fraction of total exosomes could be isolated from blood as deduced from the constant amount of exosomal markers CD63 and TSG101 detected after serial UC of rat blood plasma samples. By using UC for longer time or with shorter sedimentation distance at 4 degrees C, or UC performed at 37 degrees C, exosomal yield increased, but albumin impurity was still observed in the isolates, as assessed by transmission electron microscopy, dynamic light scattering and immunoblotting against CD63, TSG101 and albumin. Efficiency and purity were not different in case of using further diluted samples. By using SEC with different columns, we have found that although a minor fraction of exosomes can be isolated without significant albumin content on Sepharose CL-4B or Sephacryl S-400 columns, but not on Sepharose 2B columns, the majority of exosomes co-eluted with albumin. CONCLUSION: Here we show that it is feasible to isolate exosomes from blood plasma by SEC without significant albumin contamination albeit with low vesicle yield

    Extracellular Vesicle Release and Uptake by the Liver Under Normo‐ and Hyperlipidemia

    Get PDF
    Liver plays a central role in elimination of circulating extracellular vesicles (EVs), and it also significantly contributes to EV release. However, the involvement of the different liver cell populations remains unknown. Here, we investigated EV uptake and release both in normolipemia and hyperlipidemia. C57BL/6 mice were kept on high fat diet for 20–30 weeks before circulating EV profiles were determined. In addition, control mice were intravenously injected with (99m)Tc-HYNIC-Duramycin labeled EVs, and an hour later, biodistribution was analyzed by SPECT/CT. In vitro, isolated liver cell types were tested for EV release and uptake with/without prior fatty acid treatment. We detected an elevated circulating EV number after the high fat diet. To clarify the differential involvement of liver cell types, we carried out in vitro experiments. We found an increased release of EVs by primary hepatocytes at concentrations of fatty acids comparable to what is characteristic for hyperlipidemia. When investigating EV biodistribution with (99m)Tc-labeled EVs, we detected EV accumulation primarily in the liver upon intravenous injection of mice with medium (326.3 ± 19.8 nm) and small EVs (130.5 ± 5.8 nm). In vitro, we found that medium and small EVs were preferentially taken up by Kupffer cells, and liver sinusoidal endothelial cells, respectively. Finally, we demonstrated that in hyperlipidemia, there was a decreased EV uptake both by Kupffer cells and liver sinusoidal endothelial cells. Our data suggest that hyperlipidema increases the release and reduces the uptake of EVs by liver cells. We also provide evidence for a size-dependent differential EV uptake by the different cell types of the liver. The EV radiolabeling protocol using (99m)Tc-Duramycin may provide a fast and simple labeling approach for SPECT/CT imaging of EVs biodistribution. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00018-021-03969-6
    corecore